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Abstract
We describe the critical behavior of the Anderson-like transition predicted
to occur in the 2D tight-binding model with isotropic scale-free long-range
correlated disorder characterized by a power-law spectral density. We explore
the scale invariance of the participation function relative fluctuation at the
critical point to locate the mobility edge as a function of the power-law spectral
density exponent α2D. The states near the band center, which exhibit power-
law localization for uncorrelated disorder, become delocalized for α2D > 2.
In addition, we consider the finite-size scaling hypothesis to estimate the
correlation length critical exponent. We find that the critical exponent ν depends
on α2D, thus indicating that correlations in the disorder distribution are indeed
relevant in this regime, in agreement with the extended Harris criterion.

1. Introduction

The single-parameter scaling hypothesis is the basis of our understanding of the Anderson
metal–insulator transition (MIT), a continuous zero-temperature quantum phase transition in
disordered systems [1, 2]. The occurrence of a localization–delocalization transition for weak
disorder in three-dimensional (3D) geometries, and its absence in low-dimensional systems
with time reversal symmetry at any disorder strength, are the most known predictions. However,
during the last two decades, it has been shown that low-dimensional disordered systems can
support extended states or a localization–delocalization transition in the presence of short-or
long-range correlations in the disorder distribution [3–15], as well as long-ranged hopping
amplitudes [16–19]. Much attention has been given to the delocalization problem in 1D systems
with long-range correlated disorder. It has been reported by several authors [5, 10, 11, 14] that
these systems display an Anderson MIT with mobility edges separating localized and extended
states for sufficiently strong correlations. In particular, the effect of long-range correlated
scattering on the transport properties of microwave guides was studied and corroborated the
predicted presence of mobility edges [15].
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Recently, the critical behavior of the Anderson transition in the presence of scale-free
disorder in 3D was the subject of a detailed investigation [20]. It was found that, for weak
correlations, the localization length exponent remains that of the uncorrelated system. On the
other hand, it depends on the correlation exponent for strong correlations, in agreement with the
extended Harris criterion [21] (concerning the original Harris criterion see, e.g., [22, 23]). The
extended Harris criterion asserts that 1/r γ decaying correlations in the disorder distribution will
be irrelevant to the critical behavior if the correlation length critical exponent ν0 of the transition
occurring in the absence of correlations satisfies either the inequality ν0 > 2/d for correlations
with γ > d or ν0 > 2/γ for correlations with γ < d . In contrast, correlations become relevant
and a new long-range disorder fixed point becomes stable with the correlation length exponent
assuming non-universal values given by ν = 2/γ . The extended Harris criterion was developed
for systems presenting a second-order phase transition in the presence of uncorrelated disorder.
Therefore, it may not directly apply for systems presenting a correlation-induced transition.
Nevertheless, using the hypothesis that the normalized localization length obeys a single-
parameter scaling close to the correlation-induced transition in the 1D Anderson model, the
localization length critical exponent was computed [14] and found to depend on the exponent
of the disorder spectral density.

A first study of the effects of long-range correlations in the localization properties of 2D
electronic systems with orthogonal symmetry was performed in [24]. The authors considered a
striped medium in the x–y plane with on-site disorder. The on-site energies were generated by
a superposition of an uncorrelated term and a long-range correlated one along the y-direction.
It was predicted that this system displays a disorder-driven Kosterlitz–Thouless MIT in the
regime of strong correlations. More recently, the effects of long-range correlations in both x
and y directions were studied [12, 25, 26]. A transfer matrix numerical calculation on a striped
geometry, combined with finite-size scaling arguments, confirmed the presence of a correlation-
induced Kosterlitz–Thouless transition [25]. In addition, by considering the site energies
of the 2D Anderson Hamiltonian distributed in such a way as to have a power-law spectral
density S(k) ∝ 1/kα2D , an exact diagonalization formalism of finite lattices with a square
geometry showed that for α2D > 2 this model displays a phase of low-energy extended states.
In this regime, the dynamics associated with the spread of an initially localized wavepacket
becomes ballistic [12]. Moreover, the exponents governing the collapse of the participation
function for low energies (ξ ∝ L D2 ) and the long-time decay of the autocorrelation function
[C(t) ∝ t−β ] were shown to satisfy the scaling relation D2 = βd . More recently, Bloch
oscillations were predicted to occur in the α > 2 regime, whose amplitudes are consistent
with the width of the band of extended states, according to a phenomenological semi-classical
approach [26].

In this work, we report further progress along the above lines made by performing a scaling
analysis of the critical behavior of the 2D Anderson model in the presence of isotropic scale-
free long-range correlated disorder. The potential landscape will be generated to have a spectral
density decaying as 1/kα2D which implies its scale-free character. In what follows, we use an
exact diagonalization algorithm to compute the participation function which is usually taken
as an important tool for measuring the localized/delocalized nature of the energy eigenstates.
We will assume a single-parameter scaling hypothesis to hold for the relative fluctuation of the
participation function to obtain the phase diagram and to estimate the critical correlation length
exponent. In agreement with the 1D behavior, the width of the extended phase is shown to
saturate for strong degrees of correlations α2D → ∞. However, for weak correlations the states
near the band center remain critical-like, exhibiting power-law scaling. The estimated values
for the correlation length exponent are shown to depend on the power-law spectral density
exponent, which indicates the relevance of the long-range character of the disorder.
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2. Model and scaling assumptions

We consider the 2D Anderson Hamiltonian with disordered on-site energies εim on a regular
L × L lattice [2, 24]:

H =
∑

i,m

εim |i,m〉〈i,m| + t
∑

〈im, jn〉
(|i,m〉〈 j, n|), (1)

where |i,m〉 is a Wannier state localized at site (i,m) and
∑

〈im, jn〉 represents a sum over
nearest-neighbor pairs. In our calculations, we fix the energy scale by setting the hopping
energy t = 1. In order to generate a long-range correlated on-site energy landscape, we apply
a 2D discrete Fourier transform method defined by

εi,m =
L/2∑

ki =1

L/2∑

km=1

ζ(α2D)

(k2
i + k2

m)
α2D/4

× cos

(
2π iki

L
+ ψi,m

)
cos

(
2πmkm

L
+ φi,m

)
, (2)

where ψi,m and φi,m are L2/2 independent random phases uniformly distributed in the interval
[0, 2π] and ζ(α2D) is a normalization constant which is chosen to have the energy variance
〈ε2

i,m〉 = 1. We also shift the on-site energies in order to have 〈εi,m〉 = 0. Typically, this
sequence is the trace of a 2D fractional Brownian motion [27] with a well defined power-law

spectrum S(k) ∝ 1/kα2D , where k =
√

k2
i + k2

m .
The case of α → ∞ corresponds to a tight-binding model with a harmonic potential of

wavelength L. In this limit most of the states become extended due to the effective absence
of disorder except for a few states trapped at the system boundaries. In the opposite limit
of α = 0 one recovers the Anderson model with uncorrelated disorder. The nature of the
eigenstates of the 2D Anderson model with uncorrelated disorder has been a subject of intensive
investigations due to the unconventional behavior predicted by the scaling theory of Anderson
localization [31–34]. On the basis of the scaling theory for the Anderson transition, all states are
expected to be exponentially localized. However, the scaling hypothesis leads to the prediction
that the localization length of the low-energy states will be macroscopically large, especially at
low and intermediate disorder strengths. Further, at scales smaller than the localization length,
the eigenfunctions exhibit multifractal fluctuations typical of critical states having a power-
law envelope. Therefore, in numerical simulations of finite systems, a pseudo-mobility edge is
observed when varying the disorder strength or the energy, delimiting a transition from power-
law localized to exponentially localized states [31]. Recently, the power-law finite-size scaling
was reported to hold even in the presence of correlated disorder [12]. It was also shown that
the scaling relation between the exponents of the localization length and the long-time decay
of the autocorrelation function remains valid in the power-law regime. Once the numerical
simulations are restricted to relatively small lattices, the scaling prediction that a crossover to
exponential localization will take place at very large lattices cannot be probed numerically.
However, it is important to stress here that a recent reanalysis of scaling arguments has
suggested that the power-law localized regime may hold even in the thermodynamic limit [35].

In order to investigate the physical properties associated with the nature of one-electron
eigenstates (|u〉), we numerically diagonalize the Hamiltonian and calculate the participation
function ξ(u) defined by [2]

ξ(u) =
∑

i,m |c(u)i,m|2
∑

i,m |c(u)i,m|4 . (3)

Here, c(u)i,m are the amplitudes of the eigenstate |(u)〉 in the Wannier representation (|(u)〉 =∑
i,m c(u)i,m |i,m〉). In general the participation number is a good estimate of the number of sites
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that participate in the wavefunction. For extended states, ξ is proportional to the total number
of sites (ξ ∝ L2 for a square lattice). On the other hand, wavefunctions presenting power-law
decaying tails may display an anomalous scaling of the participation number ξ ∝ L D2 , with
D2 < d [28]. We averaged ξ in a small window �E around E :

〈ξ(E)〉 =
[

u=E+�E/2∑

u=E−�E/2

ξ(u)

]/
NE. (4)

We use �E ≈ 0.1 and a large number of samples such that the number of eigenmodes at each
window (NE) is close to 105 in order to obtain good accuracy. Here, we will be particularly
interested in computing the fluctuation of the participation number defined by

�ξ(E) =
√

〈ξ(E)2〉 − 〈ξ(E)〉2, (5)

where 〈ξ(E)2〉 can be computed as in equation (4). The relative fluctuation of the participation
number is given by

η(E) = �ξ(E)/〈ξ(E)〉. (6)

Within the framework of random and non-random long-range hopping models, it was
demonstrated rigorously that the distribution function of the participation function is scale
invariant at the Anderson transition [29]. Such scale invariance has been used to monitor
the critical point of long-range hopping models [30] and will also hold for general models
exhibiting a localization–delocalization transition. Here, we will use this feature to obtain the
phase diagram of the 2D long-range correlated Anderson model by exploring the fact that the
relative fluctuations of the participation function will be size independent at the critical point.

For extended states, the relative fluctuation η(E) vanishes continuously with increasing
system size since the participation function ξ(E) diverges linearly while the fluctuation
�ξ(E) has a weaker size dependence resulting from self-averaging. In the opposite regime
of exponentially localized states, the relative fluctuation grows with increasing system size
converging to a finite value. The above features can also be described in a scaling form
which provides a useful tool for locating the critical point and for measuring the correlation
length exponent. Within the framework of the single-parameter scaling hypothesis, the relative
fluctuation η in the vicinity of the mobility edge can be written in the form

η(E) = g[(E − Ec)L
1/ν], (7)

which reflects the scale invariance of the participation number distribution at the critical point
on which the relative fluctuation assumes the value g(0) irrespective of the system size. For
localized (E > Ec) and extended (E < Ec) states the relative fluctuation becomes size
dependent. In the thermodynamic limit, it converges to g(+∞) = constant for localized states
while it goes to g(−∞) = 0 for extended states. The relative fluctuation thus converges to a
step function as L → ∞, with a discontinuity at the mobility edge. Therefore, when plotting
the relative fluctuation as a function of the mode eigenenergy E , the curves obtained from
different chain sizes will cross roughly at a single point identifying the mobility edge (actually
at ±Ec in the present model). A small spread of the crossing point is usually due to small
corrections to scaling that are present in numerical calculations on finite systems. The above
scenario is valid whenever critical states appear at a single energy. For systems supporting
a phase of critical states, the relative fluctuation of the participation number remains scale
independent over the entire critical phase. In addition, we will employ a finite-size scaling
analysis to estimate the correlation length exponent ν which governs the scaling behavior of
the relevant length scale in the vicinity of the mobility edge, i.e., l∞ ∝ |E − Ec|ν . According
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Figure 1. Scaled participation function ξ(E = 0)/L2 versus α2D, for lattices with L2 =
402, 602, 802, 1002 sites. For α2D > 2 the scaled participation function ξ(E = 0)/L2 is size
independent, signaling the presence of extended states.

to the above scaling hypothesis, the derivative δ = ∂η(E)/∂E will scale in the vicinity of the
critical point as

δ = ∂η(E)/∂E = L1/ν f [(E − Ec)L
1/ν]. (8)

At the mobility edge E = Ec, δ scales with the system size as a power law L1/ν from which
the correlation length exponent ν can be directly estimated.

3. Phase diagram and critical behavior

We collected in figure 1 results for the scaled participation function near the band center
ξ(E = 0)/L2 versus the exponent α2D of the power-law spectral density of the correlated
potential for lattices with L2 = 402, 602, 802, 1002 sites. For α2D > 2 the scaled participation
function ξ(E = 0)/L2 becomes size independent, i.e. the participation function is proportional
to the total number of sites. This feature is a clear signature of the existence of extended sates
at the band center for α2D > 2. In order to locate the mobility edge within the energy band,
we employed a scaling analysis of the relative fluctuation of the participation function. In
figure 2 we show the relative fluctuation of the participation number η(E) versus energy E
for α2D = 1.5 and lattices with L2 = 402, 502, 602, 702 sites. Within our numerical accuracy,
one can observe a quite well defined collapse near the band center. At the bottom and top
of the band, the relative fluctuation increases with the system size due to the exponential
localization of the eigenstates. The collapse in the low-energy region is associated with the
nonlinear finite-size scaling previously found for the participation number in this regime [12].
It corresponds to the energy range for which the eigenstates show multifractal fluctuations
(critical-like character) at the scaling length of the system sizes used, as is reported to occur
in the 2D Anderson model with uncorrelated disorder [31]. In figure 3, we show data for
the relative fluctuation of the participation number versus energy E for α2D = 2.5 with
L2 = 402, 502, 602, 702 sites. One can observe a well defined crossing signaling the mobility
edge (see the inset). The present estimate for |Ec| = 2.9 is consistent with the range of energies
with linear scaling of the participation function with increasing system size [12]. For |E | < Ec,
the relative fluctuation decreases while increasing the system size due to the extended nature
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Figure 2. The relative fluctuation of the participation function η(E) = �ξ(E)/〈ξ(E)〉 versus
energy E for α2D = 1.5, with L2 = 402, 502, 602, 702 sites. Note that near the band center, η(E)
is size independent over a finite energy range, indicating the power-law scaling of the states in this
region.
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Figure 3. The relative fluctuation of the participation function η(E) = �ξ(E)/〈ξ(E)〉 versus
energy E for α2D = 2.5, with L2 = 402, 502, 602, 702 sites. The scale invariant point signals the
transition between extended and exponentially localized states (see the inset). The crossing point
gives the mobility edge |Ec| = 2.9.

of the eigenstates, as pointed out in section 2. It increases with L for |E | > Ec indicating
exponentially localized states.

In figure 4, we show the phase diagram for this model. We can see that, for strong degrees
of correlation (α2D → ∞), the width of the extended band saturates. In contrast with the case
for the phase diagram for the 1D counterpart model [5], the width of the extended band seems
not to vanish for α → 2. Indeed, the states near the band center exhibit power-law scaling
for the system sizes investigated [12], i.e. a typical behavior of critical states. It is important
to stress here that the present simulations on finite lattices cannot rule out the possibility of a
crossover from critical-like states to exponential localization at macroscopically large lattice
sizes [32]. Moreover, the present phase diagram was obtained assuming that the disorder width
is of the same order as the typical energy scale given by the hopping amplitude. For sufficiently
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Figure 4. Phase diagram in the (α2D, Ec) plane. The phase of extended states emerges for α2D > 2
whose width saturates as α2D → ∞. For α2D < 2 the states near the band center remain critical
within the system sizes considered. The present data cannot be used to rule out the possibility that
these critical-like states may develop an exponential decay for much larger system sizes.
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Figure 5. (a) The derivative δ = ∂η(E)/∂E at the mobility edge versus L for α2D = 2.5 and
3.0. The solid lines correspond to power-law fittings δ ∝ L1/ν . No corrections to scaling were
considered. (b) The relative fluctuation of the participation function η(E) near the critical energy
for α2D = 2.5 versus the scaling variable |E − Ec|L1/ν , with ν = 2.5. All data collapse to a
universal scaling form indicating the accuracy of the estimated correlation length exponent. Upper
and lower branches correspond, respectively, to exponentially localized and extended states.

strong disorder strengths, the states at the band center will remain exponentially localized
regardless of the value of the exponent α, as is reported to occur in the one-dimensional version
[14].

In figure 5(a) we show our numerical estimates for the derivative δ = ∂η(E)/∂E at the
critical point, as computed from two distinct spectral density exponents α2D. These data are
consistent with the finite-size scaling hypothesis with a single length scale, equation (8), which
predicts a simple power-law size dependence governed by the correlation length exponent ν.
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From the power-law fittings, we obtained the exponent ν = 2.5 ± 0.1 for α2D = 2.5 and
ν = 3.2 ± 0.2 for α2D = 3.0. For larger values of α2D, the numerical estimate of the derivative
becomes less certain once the mobility edge approaches the band edge and the vanishing small
density of states near the extremal of the energy band degrades the statistical averages, thus
resulting in larger error bars. Using the estimated correlation length exponent, we report in
figure 5(b) data for α2D = 2.5 in a universal scaling form, with L2 = 502, 602, 702, 802

and 902 sites (same lattice sizes as in figure 5(a)). The upper branch corresponds to the
phase of exponentially localized states while the lower branch corresponds to the low-energy
extended phase. The fact that data from distinct lattices sizes fall on a single curve, without the
need for any additional adjusting parameter, reflects the accuracy of the estimated correlation
length exponent and the absence of significant corrections to scaling in the asymptotic regime
investigated.

4. Conclusions

In this work we considered the 2D Anderson model with correlated disorder characterized
by the spectral density S(k) ∝ 1/kα2D . Using an exact diagonalization formalism on square
lattices and finite-size scaling analysis, we investigated the participation number and its relative
fluctuation along the entire energy band. For α2D > 2, we obtained a well defined crossing of
the relative fluctuation of the participation number at E = Ec, locating the mobility edge
separating extended and exponentially localized states. For |E | < Ec the relative fluctuations
decrease as L increases. This is a clear signature of extended states. However, for |E | > Ec the
relative fluctuation increases with system size, indicating exponentially localized states. For
α2D < 2 our data have the signature of a transition from exponentially localized to critical-like
states. This finding is consistent with the well defined crossover from exponentially localized to
power-law localized states observed to occur in the uncorrelated 2D Anderson model on finite
lattices [31–33]. The present results cannot be used to distinguish between the scenario derived
from the single-parameter scaling theory which states that these critical-like eigenfunctions will
exhibit a crossover to exponential localization at very large system sizes [32] and the recent
proposal that these states may remain critical in the thermodynamic limit [35]. We provided
the full phase diagram in the α2D × E plane. Using a finite-size scaling hypothesis, we obtained
a very nice data collapse from different system sizes close to the critical point of the Anderson
transition in the regime of α2D > 2. The critical correlation exponent was estimated to be
ν = 2.5 ± 0.1 for α2D = 2.5 and ν = 3.2 ± 0.2 for α2D = 3.0, indicating that the correlation
length exponent is non-universal. It is important to discuss the above results in the light of
the extended Harris criterion for the possible relevance of long-range correlations in disordered
systems presenting a second-order phase transition [21]. In the present case, the transition
between critical-like and exponentially localized states observed is effectively described as a
Kosterlitz–Thouless transition [31, 35], which has a diverging localization length exponent.
The extended Harris criterion thus leads to the prediction that long-range correlations will be
irrelevant to the critical behavior. This feature is indeed observed for all values of α2D < 2,
for which the phase transition remains from critical-like to exponentially localized states. It is
interesting to note that this is the range of α2D values for which the random potential presents
anti-persistent increments [5] and includes all statistically stationary potential landscapes that
have 0 � α2D < 1 [36]. The transition from exponentially localized to extended states observed
for α2D > 2 is not anticipated from the extended Harris criterion, although the relevance
of long-range correlations to disorder in this regime is indeed reflected by the non-universal
behavior of the localization length exponent.
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